Load-Balancing Spatially Located Computations using Rectangular Partitions

Erdeniz Ö. Baş¹,², Erik Saule¹, Ümit V. Çatalyurek¹,³

{erdeniz,esaule,umit}@bmi.osu.edu

¹Department of Biomedical Informatics
²Department of Computer Science and Engineering
³Department of Electric and Computer Engineering
The Ohio State University

SIAM Conference on Parallel Processing for Scientific Computing 2012
In parallel computing, the load can be spatially located. The computation should be distributed accordingly.

Applications
- Particles in Cell
- Sparse Matrices
- Direct Volume Rendering

Metrics
- Load balance
- Communication
- Stability
Different kinds of partition

Uniform

Rectilinear

$P \times Q$-way jagged (th)

m-way jagged (def, heur, th, opt)

Hierarchical (heur, opt)

Spiral (heur, opt)
Different load balance on 2304 processors

Particles (2050x2050) Uniform (17.5%) Rectilinear (15.1%)

$P \times Q$-way jagged (2.3%) m-way jagged (2.0%) hierarchical (2.7%)
This talk is about how to generate such partitions, either optimally or heuristically, and the type of guarantee we can obtain.
1. Introduction
2. Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
3. Rectilinear Partitioning
 - Nicol’s Algorithm
4. Jagged Partitioning
 - $P \times Q$-way Jagged
 - m-way Jagged
5. Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
6. Final thoughts
 - Summing up
The Rectangular Partitioning Problem

Definition

Let A be a $n_1 \times n_2$ matrix of non-negative values. The problem is to partition the $[1, 1] \times [n_1, n_2]$ rectangle into a set S of m rectangles. The load of rectangle $r = [x, y] \times [x', y']$ is $L(r) = \sum_{x \leq i \leq x', y \leq j \leq y'} A[i][j]$. The problem is to minimize $L_{\max} = \max_{r \in S} L(r)$.

Prefix Sum

Algorithms are rarely interested in the value of a particular element but rather interested in the load of a rectangle. The matrix is given as a 2D prefix sum array Pr such as $Pr[i][j] = \sum_{i' \leq i, j' \leq j} A[i'][j']$. By convention $Pr[0][j] = Pr[i][0] = 0$.

We can now compute the load of rectangle $r = [x, y] \times [x', y']$ as $L(r) = Pr[x'][y'] - Pr[x-1][y'] - Pr[x'][y-1] + Pr[x-1][y-1]$.
In One Dimension

Optimal: Nicol’s algorithm [Nic94] (improved by [PA04])

Based on parametric search.
Complexity: $O((m \log \frac{n}{m})^2)$.
Simulation Setting

Classes (Some inspired by [MS96])

Processors
Simulation are performed with different numbers of processors: most squared numbers up to 10,000.

Metric
Load imbalance is the presented metric: \(\frac{L_{\text{max}}}{\sum_{i,j} A[i,j]} - 1 \).
Outline of the Talk

1. Introduction
2. Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
3. Rectilinear Partitioning
 - Nicol’s Algorithm
4. Jagged Partitioning
 - $P \times Q$-way Jagged
 - m-way Jagged
5. Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
6. Final thoughts
 - Summing up
Rectilinear Partitioning

Generalities

- The problem is NP-Hard.
- Approximation algorithms exist but are very slow.

RECT-NICOL [Nic94]

- An iterative heuristics.
- At each iteration the partition in one dimension is refined.

Complexity:

- \(O(n_1 n_2) \) iterations (\(\leq 10 \) in practice).
- 1 iteration:
 \[O(Q(P \log \frac{n_1}{P})^2 + P(Q \log \frac{n_2}{Q})^2). \]
Outline of the Talk

1. Introduction
2. Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
3. Rectilinear Partitioning
 - Nicol’s Algorithm
4. Jagged Partitioning
 - $P \times Q$-way Jagged
 - m-way Jagged
5. Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
6. Final thoughts
 - Summing up
A $P \times Q$-way Jagged Heuristic

JAG-PQ-HEUR

- Sum on each column to generate a 1D problem.
- Partition it into P parts.
- For the first stripe, sum on each row.
- Partition it in Q parts.
- Treat all stripes.
A $P \times Q$-way Jagged Heuristic

JAG–PQ–HEUR
- Sum on each column to generate a 1D problem.
- Partition it into P parts.
- For the first stripe, sum on each row.
- Partition it in Q parts.
- Treat all stripes.

Ohio State University, Biomedical Informatics
HPC Lab [http://bmi.osu.edu/hpc]
A $P \times Q$-way Jagged Heuristic

[Diagram]

\[\sum \sum \sum \sum \sum \]

JAG–PQ–HEUR

- Sum on each column to generate a 1D problem.
- Partition it into P parts.
- For the first stripe, sum on each row.
- Partition it in Q parts.
- Treat all stripes.

[Ohio State University, Biomedical Informatics HPC Lab](http://bmi.osu.edu/hpc)
A $P \times Q$-way Jagged Heuristic

JAG-PQ-HEUR

- Sum on each column to generate a 1D problem.
- Partition it into P parts.
- For the first stripe, sum on each row.
- Partition it in Q parts.
- Treat all stripes.

Complexity:

$$O((P \log \frac{n_1}{P})^2 + P \times (Q \log \frac{n_2}{Q})^2).$$
An optimal $P \times Q$-way jagged partitioning: JAG-PQ-OPT

A Dynamic Programming Formulation

\[
\begin{align*}
L_{\text{max}}(n_1, P) &= \min_{1 \leq k < n_1} \max(L_{\text{max}}(k - 1, P - 1), 1D(k, n_1, Q)) \\
L_{\text{max}}(0, P) &= 0 \\
L_{\text{max}}(n_1, 0) &= +\infty, \forall n_1 \geq 1
\end{align*}
\]

- $O(n_1 P)$ L_{max} functions to evaluate. (Each is $O(k)$.)
- $O(n_1^2)$ 1D functions to evaluate. (Each is $O((Q \log \frac{n_2}{Q})^2)$.)

(Some significant implementation optimizations apply)

For a 512x512 matrix and 1000 processors, that’s 512,000+262,144 values. On 64-bit values, that’s 6MB.
Performance of $P \times Q$-way jagged (PIC-MAG it=30000)

- RECT-NICOL
- JAG-PQ-HEUR
- JAG-PQ-OPT

load imbalance vs. number of processors

- 0.001
- 0.01
- 0.1
- 1
- 10 100 1000 10000

RECT-NICOL
JAG-PQ-HEUR
JAG-PQ-OPT

Ohio State University, Biomedical Informatics
HPC Lab http://bmi.osu.edu/hpc

2D partitioning
Jagged Partitioning::$P \times Q$-way Jagged
m-way jagged partitioning heuristics

JAG-M-HEUR

- Similar to JAG-PQ-HEUR.
- Cut in P stripes using an optimal 1D Algorithm.
- Distribute processors proportionally to the stripe’s load.
- Compute a 1D partitioning of each stripe independently.
m-way jagged partitioning heuristics

JAG-M-HEUR
- Similar to JAG-PQ-HEUR.
- Cut in P stripes using an optimal 1D Algorithm.
- Distribute processors proportionally to the stripe’s load.
- Compute a 1D partitioning of each stripe independently.

JAG-M-HEUR-PROBE
Partition all the stripes at once using a multiple 1D arrays partitioning algorithm [Fre92].
A Dynamic Programming Formulation

\[
\begin{align*}
L_{\text{max}}(n_1, m) &= \min_{1 \leq k < n_1, 1 \leq x \leq m} \max(L_{\text{max}}(k - 1, m - x), 1D(k, n_1, x)) \\
L_{\text{max}}(0, m) &= 0 \\
L_{\text{max}}(n_1, 0) &= +\infty, \forall n_1 \geq 1
\end{align*}
\]

- \(O(n_1m)\) \(L_{\text{max}}\) functions.
- \(O(n_1^2m)\) 1D functions. (\(m\) times more than for \(P \times Q\) jagged)

(The same kind of optimizations apply.)

For a 512x512 matrix on 1,000 processors. That’s 512,000 + 262,144,000 values, if they are 64-bits, about 2GB (and takes 30 minutes).
Performance of m-way jagged (PIC-MAG $it=30000$)

![Graph showing load imbalance versus number of processors for different algorithms. The algorithms include RECT-NICOL, JAG-PQ-HEUR, JAG-M-HEUR, JAG-M-HEUR-PROBE, and JAG-M-OPT.](image)
Outline of the Talk

1. Introduction
2. Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
3. Rectilinear Partitioning
 - Nicol’s Algorithm
4. Jagged Partitioning
 - $P \times Q$-way Jagged
 - m-way Jagged
5. Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
6. Final thoughts
 - Summing up
Recursive Bisection [BB87]: HIER-RB

- Cut to balance the load evenly.
- Allocate half the processors to each side.
- Cut the dimension balances the load best.

Complexity: $O(m \log \max n_1, n_2)$.
Performance of HIER-RB (PIC-MAG it=30000)

![Graph showing load imbalance vs. number of processors for different methods: RECT-NICOL, JAG-M-HEUR-PROBE, HIER-RB. The graph plots load imbalance on the y-axis and number of processors on the x-axis. The methods are represented by different markers: RECT-NICOL (+), JAG-M-HEUR-PROBE (△), HIER-RB (*).]
An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

\[
L_{max}(x_1, x_2, y_1, y_2, m) = \min_j \min \left(\min_x \max (L_{max}(x_1, x, y_1, y_2, j), L_{max}(x + 1, x_2, y_1, y_2, m - j)) , \min_y \max (L_{max}(x_1, x_2, y_1, y, j), L_{max}(x_1, x_2, y + 1, y_2, m - j)) \right)
\]

\(O(n_1^2 n_2^2 m) \) \(L_{max} \) functions. \((n_2^2 \) times more than \(m\)-way jagged)

For a 512x512 matrix and 1000 processors, that's 68,719,476,736,000 values. On 64-bit values, that's 544TB.
An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

\[
L_{\text{max}}(x_1, x_2, y_1, y_2, m) = \min_j \min \left(\min_x \max(L_{\text{max}}(x_1, x, y_1, y_2, j), L_{\text{max}}(x + 1, x_2, y_1, y_2, m - j)) , \min_y \max(L_{\text{max}}(x_1, x_2, y_1, y, j), L_{\text{max}}(x_1, x_2, y + 1, y_2, m - j)) \right)
\]

\[O(n_1^2 n_2^2 m)\] \(L_{\text{max}}\) functions. (\(n_2^2\) times more than \(m\)-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000 values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER–RELAXED

Build the solution according to

\[
L_{\text{max}}(x_1, x_2, y_1, y_2, m) = \min_j \min \left(\min_x \max(\frac{L(x_1, x, y_1, y_2)}{j}, \frac{L(x + 1, x_2, y_1, y_2, m - j)}{m - j}) , \min_y \max(\frac{L(x_1, x_2, y_1, y, j)}{j}, \frac{L(x_1, x_2, y + 1, y_2)}{m - j}) \right)
\]
Performance of HIER-RELAXED (PIC-MAG it=30000)
Outline of the Talk

1. Introduction
2. Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
3. Rectilinear Partitioning
 - Nicol’s Algorithm
4. Jagged Partitioning
 - $P \times Q$-way Jagged
 - m-way Jagged
5. Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
6. Final thoughts
 - Summing up
Performance Over the Execution of PIC-MAG ($m = 6400$)

- RECT-NICOL
- JAG-M-HEUR-PROBE
- HIER-RB
- HIER-RELAXED

Load imbalance over iteration.
Relaxed Hierarchical Might Be Unstable ($m = 400$)
Sparsity (SLAC)
Runtime on PIC-MAG (it=30000)

- RECT-NICOL
- JAG-PQ-OPT-DP
- HIER-RB
- JAG-PQ-HEUR
- JAG-M-HEUR
- JAG-M-HEUR-PROBE
- JAG-M-OPT
- HIER-RELAXED

2D partitioning

Final thoughts::Summing up
What should I use?

Dense instances

- JAG-M-HEUR-PROBE and HIER-RELAXED dominates. (Best of two?)
- But HIER-RELAXED is unstable: it gives very different solutions when run on similar instances.

Sparse instances

- Jagged partitions can reach a worse case scenario.
- Hierarchical partitions get better results: HIER-RELAXED is the best.

Runtime (on a 514x514 matrix with 1024 processors)

- HIER-RB one milliseconds
- JAG-PQ-HEUR, JAG-M-HEUR: 10 milliseconds.
- JAG-M-OPT: hours.
What did I left out?

More details in our Technical Report (arXiv 1104.2566)

- Guarantees for most heuristics (approximation ratio).
- m-way jagged admits optimal algorithms for fixed column cut and for fixed processor distribution.
- Multi-level partitioning can be used to achieve better solutions.
What did I leave out?

More details in our Technical Report (arXiv 1104.2566)

- Guarantees for most heuristics (approximation ratio).
- m-way jagged admits optimal algorithms for fixed column cut and for fixed processor distribution.
- Multi-level partitioning can be used to achieve better solutions.

Will these algorithms help your application?

A sequential tool is available! Check it out at http://bmi.osu.edu/hpc/software/spart/
Thank you

Datasets

Thanks to Y. Omelchenko and H. Karimabadi for providing PIC-MAG data; and R. Lee, M. Shephard, and X. Luo for the SLAC data.

More information

contact: umit@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/, http://bmi.osu.edu/~umit or http://bmi.osu.edu/hpc/software/spart/

Research at HPC lab is funded by

[Logos of funding agencies]
Marsha Berger and Shahid Bokhari.
A partitioning strategy for nonuniform problems on multiprocessors.

Greg N. Frederickson.
Optimal algorithms for partitioning trees and locating p-centers in trees.

Fredrik Manne and Tor Sørevik.
Partitioning an array onto a mesh of processors.

David Nicol.
Rectilinear partitioning of irregular data parallel computations.
Ali Pinar and Cevdet Aykanat.
Fast optimal load balancing algorithms for 1d partitioning.