Comparative Analysis of Biclustering Algorithms

Doruk Bozdag1, Ashwin S Kumar1, Umit V Catalyurek1,2

1 Department of Biomedical Informatics

2 Department of Electrical and Computer Engineering

The Ohio State University
• **Objective:** Analysis of biclustering algorithms that use microarray data sets for identifying functionally related genes.

• Several approaches to identify genes that have related expression levels
 • Related expression => Related biological functions

• **Clustering:** gene behavior across all samples
 • Drawback: Functionally related genes may not exhibit similar pattern in all samples

• **Biclustering:** gene behavior across a subset of samples
 • Introduced by Cheng and Church (2000)
• Comparing biclustering algorithms is very challenging
 • Numerous algorithms with different objectives and search strategies.
• Identified three aspects of algorithms and corresponding methods to evaluate these aspects independently.
 • Bicluster patterns sought
 • Patterns that optimize the objective function of an algorithm
 • Theoretical analysis
 • Search technique
 • Success of algorithms in finding the patterns that they target
 • Experimental analysis on synthetic data sets
 • Biological relevance
 • Biological significance of identified biclusters
 • Experimental analysis on real data sets
• Bicluster patterns can be classified into two:
 • Global: Defined on multiple biclusters. Membership of a row/column depends on external elements and other clusters
 • **Local**: Defined on single clusters. No information required about elements outside the bicluster.

Global pattern example

Local pattern example
Well-known Local Patterns

Constant bicluster

Constant rows

Constant columns

Shifting

Scaling

Shift-scale
Analyzing patterns sought

1. Assume that the bicluster has a shift-scale pattern (the most general local pattern)
2. Plug in $a_{ij} = \alpha_i \times \pi_j + \beta_i$ the objective function
3. Find constraints on α_i, π_j and β_i to optimize obj. function.
4. Lookup for the constraints below to find patterns.

<table>
<thead>
<tr>
<th>α_i</th>
<th>π_j</th>
<th>β_i</th>
<th>Simplified \hat{a}_{ij} ($i \in I$, $j \in J$)</th>
<th>Bicluster pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>any</td>
<td>constant</td>
<td>constant</td>
<td>Constant bicluster</td>
</tr>
<tr>
<td>any</td>
<td>0</td>
<td>constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>constant</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>varying</td>
<td>any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>varying</td>
<td>0</td>
<td>varying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>varying</td>
<td>varying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>varying</td>
<td>varying</td>
<td>varying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>varying</td>
<td>varying</td>
<td>$\pi_j + \beta_i$</td>
<td>Shifting</td>
</tr>
<tr>
<td>varying</td>
<td>varying</td>
<td>0</td>
<td>$\alpha_i \times \pi_j$</td>
<td>Scaling</td>
</tr>
<tr>
<td>varying</td>
<td>varying</td>
<td>varying</td>
<td>$\alpha_i \times \pi_j + \beta_i$</td>
<td>Shift-scale</td>
</tr>
</tbody>
</table>
• **Objective:** Minimize

\[MSR = \frac{1}{|I||J|} \sum_{j \in J, i \in I} \epsilon_{ij}^2 \]

where

\[\epsilon_{ij} = a_{ij} - a_{iJ} - a_{IJ} + a_{IJ} \]

• **Criteria for perfect biclusters:**

\[(\alpha_i - \bar{\alpha})(\pi_j - \bar{\pi}) = 0 \]

<table>
<thead>
<tr>
<th>(\alpha_i)</th>
<th>(\pi_j)</th>
<th>(\beta_i)</th>
<th>Bicluster pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 constant</td>
<td>any</td>
<td>any</td>
<td>constant bicluster, constant rows</td>
</tr>
<tr>
<td>any constant</td>
<td>any</td>
<td>any</td>
<td>constant bicluster, constant columns, shifting</td>
</tr>
<tr>
<td>any constant</td>
<td>0</td>
<td>any</td>
<td>constant bicluster, constant rows</td>
</tr>
<tr>
<td>any constant</td>
<td>constant</td>
<td>any</td>
<td>constant bicluster, constant rows</td>
</tr>
</tbody>
</table>

• Not optimized for detecting scaling and shift-scale patterns
• **Objective:** Maximize relevance indices

\[R_{Ij} = 1 - \frac{\sigma_{Ij}^2}{\sigma_{.j}^2} \]

where

\[\sigma_{Ij} = \frac{1}{|I|} \sum_{i \in I} (a_{ij} - a_{Ij})^2 \]

• **Criteria for perfect biclusters:**

\[(\alpha_i - \bar{\alpha}) \times \pi_j - (\beta_i - \bar{\beta}) = 0\]

<table>
<thead>
<tr>
<th>α_i</th>
<th>π_j</th>
<th>β_i</th>
<th>Bicluster pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>any</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>0</td>
<td>any</td>
<td>constant</td>
<td>constant bicluster</td>
</tr>
<tr>
<td>constant</td>
<td>any</td>
<td>0</td>
<td>constant bicluster, constant columns</td>
</tr>
<tr>
<td>constant</td>
<td>any</td>
<td>constant</td>
<td>constant bicluster, constant columns</td>
</tr>
<tr>
<td>any</td>
<td>0</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>any</td>
<td>0</td>
<td>constant</td>
<td>constant bicluster</td>
</tr>
</tbody>
</table>

• Not optimized for detecting constant rows, shifting, scaling and shift-scale patterns
Correlated Pattern Biclusters (CPB)

- **Objective**: PCC between every pair of rows in the bicluster should be greater than a threshold, with respect to the columns in the bicluster.

 \[PCC = \frac{\sum_{j \in J} (a_{ij} - a_{iJ})(a_{\ell j} - a_{\ell J})}{\sqrt{\sum_{j \in J} (a_{ij} - a_{iJ})^2 \sum_{j \in J} (a_{\ell j} - a_{\ell J})^2}} \]

- **Criteria for perfect biclusters**: \(\alpha_i^2 \alpha_{\ell}^2 \left(\sum_{j \in J} (\pi_j - \overline{\pi})^2 \right)^2 \) is non-zero
 - PCC = 1 if the denominator is non-zero

<table>
<thead>
<tr>
<th>(\alpha_i)</th>
<th>(\pi_j)</th>
<th>(\beta_i)</th>
<th>Bicluster pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>varying</td>
<td>any</td>
<td>constant columns, shifting scaling, shift-scale</td>
</tr>
<tr>
<td>varying</td>
<td>varying</td>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

- Cannot capture constant biclusters and constant rows
- Biclusters with shift-scale patterns have perfect correlation between any pair of rows with respect to columns in the bicluster
Objective: Find a set of columns s.t. the order of the columns is the same in all rows:

\[a_{ij} < a_{ik} \iff a_{\ell j} < a_{\ell k} \]

Criteria for perfect biclusters:

- Potentially identifies the same type of biclusters as CPB.
- Distribution of PCC values between rows in an OPSM is the same as distribution of PCC values between pairs of random vectors that have the same column ordering.
 - Smallest PCC between 20 pairs of random vectors with the same ordering in 20 (60) columns is 0.83 (0.96).
 - Same column ordering => high PCC values
Experiments: Algorithms Considered

- Algorithms that seek local patterns
 - **CC** – threshold MSR = 0.01, 100 runs
 - **HARP** – no implementation available
 - **CPB** – threshold PCC = 0.9, 100 runs
 - **OPSM** – number of partial models = 100

- Algorithms that seek global patterns
 - **SAMBA** – biclusters with large variance
 - **MSSRCC** – biclusters with small combined MSR, 100 runs
1. Generate a 1000x120 matrix filled with random values [0 1].
2. Generate an NxN bicluster (where N is 20, 40 or 60) with perfect:
 • Shift pattern, or
 • Shift-scale pattern, or
 • Order preserving pattern.
3. Implant the bicluster into the matrix and shuffle rows & columns
Evaluating the search strategies

- Compare each bicluster returned by an algorithm against the implanted bicluster.
- The smaller are the uncovered portion (U) and external portion (E), the better.

- In the result charts, U and E are given on the x-axis and y-axis, respectively.
 - Each point represents the best bicluster found in a dataset
 - Total of 10 points (datasets) per algorithm
Effect of Bicluster Pattern

- Implanted a 60x60 bicluster with shift pattern

- CPB and CC are the best to detect shift patterns.
- $U > 0$ for CC, but $E < 10\%$
Implanted a 60x60 bicluster with **shift-scale pattern**

- CPB and CC are again the best to detect shift-scale patterns.
- Other algorithms perform slightly worse compared to shift pattern
• Implanted a 60x60 bicluster with order-preserving pattern

• Results are similar to shift-scale, due to high PCC between rows
• The best cluster found by OPSM is slightly better than shift-scale
Effect of Bicluster Size

- Implanted a **60x60** bicluster with shift pattern

- The same results shown before.
Effect of Bicluster Size

- Implanted a **40x40** bicluster with shift pattern
- It gets harder to detect a smaller bicluster
- CPB still perfectly identified a 40x40 bicluster in 8 datasets
Effect of Bicluster Size

- Implanted a **20x20** bicluster with shift pattern

- It gets harder to detect a smaller bicluster
- CPB perfectly identified a 20x20 bicluster in only 1 dataset
Effect of Noise

- Implanted a 40x40 bicluster with shift pattern **without noise**

- The same results shown before.
- Next: each value is randomly incremented to simulate noise.
Effect of Noise

- Implanted a 40x40 bicluster with shift pattern with 5% noise

- Performance drops in general
- CPB is least affected, OPSM is most affected
• Implanted a 40x40 bicluster with shift pattern with 20% noise

• Performance drops dramatically
• CPB is still successful at returning minimal external portion
- Implanted 2 overlapping biclusters in each dataset
 - Total of 20 over 10 datasets

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
</tbody>
</table>
```

- 50% overlap => 50% of rows and 50% of columns overlap
Effect of Overlap

- Implanted 40x40 biclusters with shift pattern **without overlap**

- Similar results as before
Effect of Overlap

- Implanted 40x40 biclusters with shift pattern with 25% overlap

- Performance of CPB and OPSM was not affected significantly
- Performance of CC drops due to random masking
Effect of Overlap

- Implanted 40x40 biclusters with shift pattern **with 50% overlap**

- Performance of CPB and OPSM was not affected significantly
- Performance of CC drops due to random masking
Experiments on Real Datasets

- Datasets from the Gene Expression Omnibus (GEO) database
 - Yeast (GDS1611) – 9275 genes, 96 conditions
 - Mouse (GDS1406) – 12422 genes, 87 conditions
 - Drosophila (GDS1739) – 13966 genes, 54 conditions

- Evaluation based on Gene Ontology (GO) term enrichment.

- Top 10 clusters with the most enriched GO terms are reported
 - For each cluster, $-10\log(p-value)$ of the most enriched term is reported
Experiments on Real Datasets

- Yeast dataset

- CPB was better in general, but MSSRCC found the best cluster
- SAMBA clusters and one of the OPSM clusters were also good.
Experiments on Real Datasets

- Mouse dataset

- Most enriched clusters by MSSRCC, followed by CPB and SAMBA.
- Algorithms that seek global patterns are also strong
Experiments on Real Datasets

- Drosophila dataset

- MSSRCC and CPB again performed the best
- One of the CC clusters was also good
Conclusions

• Compared biclustering algorithms on the basis of bicluster patterns and power of search technique
 • Focused on local patterns

• CPB performs significantly better, good candidate to detect shifting and scaling patterns
 • Robust against noise, overlaps and varying in bicluster sizes

• Clusters found by CPB and MSSRCC on real datasets were more significantly enriched
 • Patterns sought by CPB and MSSRCC may have higher biological relevance
Thanks

• For more information visit
 - umit@bmi.osu.edu
 - http://bmi.osu.edu/~umit or http://bmi.osu.edu/hpc

• Research at the HPC Lab is funded by