Investigating the Use of GPU-Accelerated Nodes for SAR Image Formation

Timothy D. R. Hartley1,2, Ahmed R. Fasih2, Charles A. Berdanier3, Fusun Ozguner2, Umit V. Catalyurek1,2

1Department of Biomedical Informatics, \\
2Department of Electrical and Computer Engineering, \\
The Ohio State University, Columbus, OH, USA. \\
3Air Force Research Laboratory, \\
Wright-Patterson Air Force Base, OH 45433
Outline

• Motivation for using GPU clusters
• SAR overview
• Software for programming GPU clusters
• Backprojection implementation
• Experimental results
• Conclusions and future work
Application Motivation

• SAR image formation is time-consuming
 • Forming 2kx2k image with a small input set takes over 60 seconds on one CPU core
• SAR image formation is highly parallel
 • Each output pixel is independently computed
 • Input data can be partitioned also
• SAR datasets are often large
Hardware Motivation

Source: Nvidia

- NVIDIA GPU
- Intel CPU

- Tesla 10-series
- Tesla 8-series
- Intel Xeon Quad-core 3 GHz
- Intel Core2 Dual-core 3.0 GHz
- Intel Pentium 4 Dual-core 3.0 GHz
- Intel Pentium 4 3.2 GHz

September 23, 2006 to March 15, 2012
SAR overview

- Spotlight-mode Synthetic Aperture Radar (SAR) aims a radar beam at 'scene center'
- Records radio pulse reflections from multiple azimuth angles (1-d line projections)
1-d Line Projections

![Graph showing 1-d line projections with labels for pulse number and range (pixels).]
Image Formation

- For each input, loop over the output pixels
- For each output pixel, determine the contribution of the input line projection
• Application is decomposed into a task-graph
 • Task graph performs computation
 • Individual tasks perform single function
 • Tasks are independent, with well-defined interfaces
 • Higher-level programming abstraction

• DataCutter
 • Coarse-grained filter-stream framework
 • OSU/Maryland-bred component-based framework
 • Third-generation runtime uses MPI for high-bandwidth network support
• Imaging pipeline composed of three coarse-grained filters connected by data streams
• 'Form Partial Image' filter is the time-consuming task = perform on GPU
• To map to a GPU cluster for even faster processing, we need to partition work

• Partition Input (PI)
 • Simple to partition
 • Input dataset consists of vectors of range profiles

• Partition Output (PO)
 • Simple to partition
 • Output dataset consists of image pixels
Partitioning Input

- Partition input into equal pieces based on number of 'Form Partial Image' filters
- Send input partitions to downstream filters
- Image formation filters output whole range of image pixels with partial results
- Aggregate final image by accumulation partial results
Partitioning Output

- Partition output from 'Form Partial Image' filters
- Broadcast input from 'Read Input Data' filter
- Each image formation filter only outputs portion of whole output image
- Aggregate final image by simple memcpy
Combining DataCutter and CUDA

• DataCutter uses a simple API
 • `init()`, `process()`, `finish()` functions
 • `process()` function usually implemented as loop
 • Read in data from upstream
 • Process data somehow
 • Write data to output stream

• CPU implementation inline in `process()` function

• CUDA implementation a function call
 • `gpu_backproj()` (for example)
 • DataCutter provides access to DCBuffer memory area with pointers – pass to CUDA function
1 process() {
2 // ... setup constants, read global values from runtime ...
3 DCBuffer * buffer;
4 while((buffer = read("in") != NULL) {
5 // ... get data from buffer about data size ...
6
7 // ... get ptr and increment extract index ...
8 phd.real = (float *) buffer->getPtrExtract();
9 buffer->incrementExtractPointer(...);
10
11 // ... prealloc. outgoing buffer and get ptrs ...
12
13 gpu_backproj(...);
14 }
15 }
CUDA Backprojection

- Fairly straightforward triple-loop computation
 - Threads calculate one pixel's values based on all input projections
 - Thread blocks are rectangular sub-images
- Interesting wrinkles
 - Line projections and sensor location information can be stored as textures
 - Leverage texture cache, which is faster than global memory
 - Leverage linear interpolation
 - Required because seldom will pixel centers fall directly on a line projection sample
 - 32 KB shared memory used to store sub-images
Experiments: System

• Perform tests on Ohio Supercomputer Center's BALE cluster

• BALE nodes
 • 2x AMD dual-core Athlon CPUs
 • 2x NVIDIA Quadro 5600 GPUs
 • 1.5 GB memory
 • G80-based (CUDA compute capability 1.0)
 • 4 GB main memory
 • Infiniband NICs
Experiments: Input and Output

- GOTCHA input dataset
 - Air Force Research Lab's Sensor Data Management System
 - SAR phase history data collected with a 640 MHz bandwidth
 - Multiple elevation angles (we only make use of one in our experiments)
 - Eleven azimuth angles
 - Parking lot with various cars and construction vehicles

- Three output image sizes (square)
 - 512 – SM, 2048 – MED, 4096 - LRG
GOTCHA Images
Experiments: Implementations

- C/MPI implementation
 - Very simple multi-process version
 - No SIMD, other optimizations
- DataCutter/C++ implementation
 - Use kernel from C/MPI version
 - Multithreaded, distributed
- C/CUDA implementation
 - Single GPU
- DataCutter/CUDA implementation
 - Multithreaded, distributed, multi-GPU
CPU Scalability Results

- Experiments run with one degree of input
- DataCutter scales slightly better than MPI
 - Due to better overlap between computation and communication
Single GPU Results

- One degree of input
- DataCutter introduces small overhead
 - Due to process invocation, higher-level paradigm, etc.
- GPU execution times scale more than 2x better than linearly with number of pixels
CPU/GPU Scalability

One degree of input, 4Kx4K (LRG) image size

Begin to see divergence on GPUs for input and output partitioning
• 11 degrees of data (largest dataset)
• Good scalability up to 8 GPUs
• Much better scalability with output partition
Conclusions and Future Work

• DataCutter is appropriate for coarse-grained GPU cluster applications
 • MPI-based runtime uses high-speed interconnects; ready for HPC applications
 • Encapsulated GPU filter code means easy application development, usage of heterogeneous systems

• Future work
 • Fix bottlenecks for increased scalability
 • Tree-style reduction
 • GT200-based GPUs -> zero-copy and simultaneous communication and computation
 • Automatic data buffer sizing
• Research at the HPC lab is funded by

• Questions?

Thanks